Computers and Operations Research 112 (2019) 104764

journal homepage: www.elsevier.com/locate/cor

Contents lists available at ScienceDirect

Computers and Operations Research

Computers &
jons Research

A heuristic procedure for computing the nucleolus n

Federico Perea®*, Justo Puerto®

Check for
updates

2Grupo de Sistemas de Optimizacién Aplicadas, Instituto Tecnoldgico de Informadtica, Ciudad Politécnica de la Innovacion, Edifico 8G, Acc. B. Universitat

Politécnica de Valéncia, Camino de Vera s/n, Valéncia, 46021, Spain

b nstituto de Matemdticas de la Universidad de Sevilla. Avda. Reina Mercedes, s/n, Sevilla, 41012, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 13 November 2018
Revised 27 June 2019
Accepted 3 August 2019
Available online 6 August 2019

Keywords:

Nucleolus

Game theory

Linear programming
Heuristic

This paper introduces a row and column generation algorithm for finding the nucleolus, based on a linear
programming model proposed in an earlier research. Since this approach cannot return an allocation for
large games, we also propose a heuristic approach, which is based on sampling the coalitions space.
Experiments over medium sized games show that the proposed heuristic finds allocations which are close
to the true nucleolus, in a reasonable amount of time. Experiments over 100-player games show that the
proposed heuristic can be applied to games of large size.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A transferable utility (TU) game can be defined by means of:

e A set of players N = {1, ..., n}. Players are allowed to cooperate,
but their objective is to maximize their own individual benefit.

o For each coalition Sc N, the characteristic function v(S) repre-
sents the profit that the cooperation of the players in S yields,
without the help of the other N\S players. The set of all players
N is referred to as the grand coalition.

TU-games can therefore be identified by means of their set of
players and characteristic function: (N, v).

One of the main challenges in TU-games consists of sharing the
profit that the grand coalition can make, among the different play-
ers. There are two main ways to address that question:

1. Using solution sets.
2. Using allocation rules.

The most well-known representative of the first type is the core
(Owen, 1995). The core of a TU-game is defined as

Cw)={xeR":x(S)>v(S) VSCN, x(N) =v(N)}.

Core allocations ensure that each coalition S gets a share of the
profit obtained by the grand coalition which is, at least, as high as
the profit that S can make on their own. Thus, core allocations are
well accepted due to the fairness conditions they satisfy.

* Corresponding author.
E-mail addresses: perea@eio.upv.es (F. Perea), puerto@us.es (J. Puerto).

https://doi.org/10.1016/j.cor.2019.104764
0305-0548/© 2019 Elsevier Ltd. All rights reserved.

However, there are games without core allocations. Even for
some games which do have core allocations, it might be very diffi-
cult to find them or, choose one among them. Therefore, at times
one is interested in the second type of solutions: Allocation rules.
Allocation rules are procedures that allocate to each player a share
of the benefit obtained by the grand coalition. Two important such
rules are the Shapley value and the nucleolus, which are well ac-
cepted for the properties they satisfy, and are widely used in com-
plex TU-games (e.g. see Yu et al., 2017, where the Shapley value is
computed in a pickup and delivery cooperative game). The reader
should note that the Shapley value belongs to the core when the
game is convex, and the nucleolus belongs to the core whenever
the core is non-empty.

In this paper, we focus on the nucleolus (Kohlberg, 1972), which
we now introduce for the sake of completeness.

Given a TU-game (N, v), the set of pre-imputations V and im-
putations V of the game are:

n
V=1{xeR":) x;=v(N) ¢,
=

n
V=1xeR":) x;=v(N).x;>v({j}). VjeN
j=1

Note that V c V. Given a pre-imputation x € V, the excess vector of

x is the vector 6 (x) € R2"-2

6(x) = (e(S,x)), withe(S,x)=v(S) =Y xVScN, S#4,N.
ieS

After introducing these two concepts, the nucleolus can be defined.

https://doi.org/10.1016/j.cor.2019.104764
https://www.ScienceDirect.com
https://www.elsevier.com/locate/cor
https://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.104764&domain=pdf
mailto:perea@eio.upv.es
mailto:puerto@us.es
https://doi.org/10.1016/j.cor.2019.104764

2 E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764

Definition 1.1. The (pre)nucleolus is the unique (pre)imputation
that lexicographically minimizes (<) the non-increasingly sorted
excess vector.

The nucleolus satisfies the following two properties:

o If (S, x) <0V Se2VN, then x is a core allocation.
o Provided the core is non-empty, the nucleolus is a core alloca-
tion.

Despite the huge complexity of computing the nucleolus, sev-
eral attempts have been made in order to compute this solu-
tion concept by means of a single linear programming (LP) model.
Kohlberg (1972) computes the nucleolus from a LP problem with
0(2™!) constraints. A bit later, Owen (1974) reduces the size of this
problem to O(4") constraints and O(2") variables with large con-
straint coefficients. Puerto and Perea (2013) propose another sin-
gle LP problem for computing the nucleolus, with coefficients in
{-1,0,1}.

The extreme complexity of the computation of the nucleolus
has provoked that more attempts have been made in the area of it-
erative approaches. To cite a few, Maschler et al. (1979) propose an
algorithm that solves 0(4™) LP problems with O(2") variables and
constraints, whose coefficients are —1, 0, or 1. Dragan (1981) finds
the nucleolus by solving at most n — 1 LP problems with O(n) con-
straints and O(2") variables. Sankaran (1991) proposes a new al-
gorithm that needs O(2") LP problems whose coefficients are —1,
0, or 1. Solymosi (1993) proves that the nucleolus can be found
by solving at most n—1 LP’s with O(n) constraints and O(2")
variables. Later on, Hallefjord et al. (1995) introduce a constraint
generation approach. Potters et al. (1996) describe a fast algo-
rithm to find the nucleolus of any game with non-empty impu-
tation set, based on solving at most n — 1 LP’s with at most 2" +
n—1 constraints and 2" — 1 variables. More recently, Nguyen and
Thomas (2016) use nested linear programs in their approach to
find the nucleolus of large games. The list of references includ-
ing exact procedures for finding the nucleolus is very large. How-
ever, it must be noted that not all the articles published propose
correct procedures to find the nucleolus, as can be derived from
Guajardo and Jornsten (2015). The authors of that paper show mis-
takes in some of the algorithms proposed in the literature.

In general, finding the nucleolus is a problem of exponen-
tial complexity. However, for some classes of games this solu-
tion concept can be found efficiently. We now review (non ex-
haustively) the literature dealing with the nucleolus for specific
classes of games. Hamers et al. (2003) prove that the nucleolus
of neighbor games can be computed by a cuadratic-order algo-
rithm. Solymosi et al. (2005) study the nucleolus of permutation
games, and prove its polynomial complexity under certain condi-
tions. Branzei et al. (2006) propose a cuadratic algorithm for com-
puting the nucleolus of airport games. Deng et al. (2009) prove
that the nucleolus of flow games can be computed in poly-
nomial time, only when the game is defined on simple net-
works. Maschler et al. (2010) study the nucleolus of tree games.
van den Brink et al. (2011) propose a polynomial time algorithm
for computing the nucleolus of games in which some players
need permission from other players, in order to enter the game.
Martinez-De-Albéniz et al. (2013) compute the nucleolus of assign-
ment games. Greco et al. (2014) characterize the complexity of the
nucleolus on compact coalitional games. Kurz et al. (2014) study
the nucleolus of majority games. Hou and Driessen (2015) use
the indirect function of a cooperative game in characteristic func-
tion form in order to compute the nucleolus of compromise sta-
ble games. Kamiyama (2015) studies the nucleolus of arborescence
games, proving that it can be found polynomially when the graph
is acyclic and directed. Aiche et al. (2015) examine the nucleolus
of a class of market games, and compare it with the Shapley value.

Fang et al. (2015) propose a polynomial time algorithm for the nu-
cleolus of path cooperative games. Fang et al. (2016) compute the
nucleolus for threshold cardinality matching games, which is done
polynomially for some types of graphs. Sziklai et al. (2017) study
the nucleolus of directed acyclic graph games. Baiou and Bara-
hona (2017) propose a polynomial time algorithm for computing
the nucleolus of shortest path games.

Despite the vast literature proposing exact methods for com-
puting the nucleolus, we have barely found three references that
propose non-exact approaches for this solution concept, or vari-
ations of it. Chin (1997) proposes a genetic algorithm for com-
puting the nucleolus of the specific class of assignment games.
Kimms and Cetiner (2012) suggest a heuristic variation of an al-
gorithm they propose for computing the nucleolus, which is based
on constraint generation. However, the authors of that paper dis-
card this heuristic approach because “there is no guarantee that
using a heuristic would be more efficient” than the exact approach.
Flisberg et al. (2015) propose cost allocation methods to solve cost
sharing problems in a forest fuel transportation problem. Among
them, they adapt the nucleolus when the characteristic function is
incomplete. Wang et al. (2017) propose several nucleolus-based al-
locations, and a genetic algorithm for finding them.

As can be seen there is lack of good heuristic procedures that
can provide reasonable approximations of the nucleolus for general
purpose TU games, and this is one of the major motivations of this
work.

Arguably, the nucleolus is one of the most well-known alloca-
tion rules in cooperative game theory. At the same time, its huge
computational complexity has prevented many practitioners from
applying it. Consider for example a game in which the players are
the n bank entities operating on a given region. The characteristic
function of each coalition would be the cost for these banks to op-
erate an ATM network needed to serve their clients. Whenever n
is large enough (for example n = 50, which is a realistic number
for this example), even getting and storing the characteristic func-
tion of the game would be a hard task, not to mention finding the
excess vector, sorting it, etc. For this reason, in this paper we in-
troduce a heuristic approach for finding the nucleolus of a game,
which does not rely on the complete knowledge of the character-
istic function. Heuristic algorithms are efficient procedures which
find a solution to a problem in a reasonable amount of time, al-
though the solution returned is not guaranteed to be optimal. In
our case, the allocation returned by the heuristic proposed is not
guaranteed to be the nucleolus. However, as we will see in the ex-
periments section, the allocation returned by our heuristic is close
to the true nucleolus.

The rest of this paper is structured as follows. We begin by in-
troducing a variable/constraint generation algorithm in Section 2,
based on the LP model introduced in Puerto and Perea (2013). Be-
cause this approach does not seem very promising, especially for
large games, we add a sampling phase to it in Section 3. In the
same section, we propose a heuristic approach, which aims at find-
ing an allocation close to the nucleolus, for large games in which
exact procedures cannot be applied. All approaches proposed are
computationally tested in Section 4, over a number of games ran-
domly generated. The paper closes with some conclusions and the
list of references.

2. A column/row generation algorithm

Puerto and Perea (2013) proved that the nucleolus can be found
by means of the following LP problem:

2n-2 2n-2

min Y~ (A — Agr) | Kt + Y di (1)

k=1 i=1

E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764 3

Table 1
Percentage of binding Cy constraints in LP mod-
els.
n Percentage % Distribution
10 0.04 (1,4,3,1,0,...)
11 0.02 (0,7,1,1,1,0,...)
12 0.01 (0,5,1,1,1,0,...)
13 < 0.01 (0,7,1,2,2,0,0,0,1,0...)
14 < 0.01 (0,5,0,3,2,0,1,1,0,...)
15 <001 (06,1,3,1,01,1,2,0,..)
16 <001 (071,2,0,12,030,..)
s.t. di,<29i7tk,Vi,k:l,...,z”—z, (2)
Oi=v(S) -y x.Vi=1,...2"-2, (3)
JeSi
n
Yo% =v(N),
j=1
dg>0, Vik=1,...,2" -2, (4)

with parameters A satisfying that A, = 81, k=1,...,2" -2, for a
convenient choice of §, and Ayn_; = 0. Note that finding a proper
value of § is key. Choosing a value too large might provoke numer-
ical inaccuracy, whereas choosing a value too small might lead to
8k being considered as zero by computer precision, even for small
values of k.

In this LP problem, indexes i and k both refer to coalitions,
whereas index j refers to players. Variable x; stands for the alloca-
tion assigned to player j, variable 6; refers to the excess of coalition
i, and variable ¢, is the kth excess, lexicographically sorted. There
is no straightforward interpretation of dy.

The enormous number of variables and constraints makes this
model intractable for a relatively large number of players (the
aforementioned paper only reports results over 18-player games or
less). Note that there are 0(4") variables d; and constraints (2). We
denote Cj, the constraint (2) for a given i and a given k.

One immediate question that comes to our mind is: how many
constraints Cj, are binding in the optimal solution to this LP
model? In this paper, we say that a constraint is binding if it
does not have any slack. Note that our concept of binding con-
straint does not require that all potentially multiple solutions are
binding on this constraint. Therefore, in this case, Cj, is binding
if dy, = 6; — ;. Note that, if a constraint Cy is not binding, then
the corresponding d;, = 0. This is due to the fact that since we
are minimizing, and Ay, — A1 > 0, if 6; —t, > 0, then dy attains
this value and the constraint is binding. Otherwise, d; = 0 and the
constraint is not binding. In the latter case, no need to define non-
binding Cj; constraints, nor their corresponding dj, variables. In or-
der to gain more insights into this matter, we solved the LP models
for the games in Puerto and Perea (2013), and checked how many
Cj, constraints were binding, considering only the first kmax = 20
largest excesses, that is, k=1, ..., kmax. The results of this experi-
ment are shown in Table 1.

Column “Percentage” indicates the relative frequency of Cj, con-
straints which are binding (all of them way below 1%). Column
“Distribution” indicates the number of binding constraints Cj, in
terms of the size of the coalitions i that make these constraints
binding. The jth component of each such vector is the number
of constraints of size j which are binding. For example, for the
game with 10 players, one coalition with one player is binding,
four coalitions with two players are binding, three coalitions with
three players are binding, and one coalition with four players is
binding (for larger coalitions, none of them is binding, which is in-
dicated by “.. ").

These results show a promising conclusion: only very few Cy,
constraints are binding. Besides, we have an indication that most of
these binding constraints correspond to coalitions i with a “small”
size. However, how to find these pairs (i, k) such that Gy is bind-
ing?

A first approach to try to answer such question consists of in-
troducing variables d;, and constraints C; only when the corre-
sponding Cj, constraint is violated, a so called row-column gen-
eration algorithm (RCG). For this, define the set Ac 2N x 2N, A pair
(i, k) is in A if the corresponding variable d;, and constraint Cy, are
in the model. The LP programs to be solved in the iterative method
we present are:

pL)
min Z (A —)‘-k+l) kt, + Z dix (5)
k=1 i:(i,k)eA
LP(A): st. dy>6;—t V (i,k) €A,
(3)and (4)
dy >0V (i,k) €A, (6)

with A, =81 k=1,..., 2" — 2 and Ayn_q = 0. This problem is de-
noted as LP(A).

Note that the previous model implies that dy =0 for all (i,
k)¢ A, since A, — Ay, q >0, and dy, must be non-negative. The al-
gorithm first sets A=@. Then it updates A to include those (i,
k)¢ A such that 6; —t;, > 0 (note that, for these pairs, dy < 6; —t;
and therefore this constraint would be violated in the original LP).
The process is repeated until there are no more constraints vio-
lated. When such convergence is achieved, the solution returned is
the nucleolus. This is true because the optimal solution to the re-
laxed problem (the one in which not all constraints are necessarily
present) satisfies all the constraints (even those which are not im-
posed) of the full problem. Therefore, the optimal solution to the
relaxed problem is also an optimal solution to the full problem. As
proved in Puerto and Perea (2013), the optimal solution to the full
problem is the nucleolus.

Algorithm 1 shows a pseudocode of this method.

Algorithm 1: Pseudo-code of the row/column generation al-
gorithm for computing the nucleolus.

Data: The characteristic function of a game
Feasible = 0, A = ¢;
while Feasible = 0 do
Feasible = 1;
solve LP(A) — x*, t*, 0%;
fori k:(i,k) ¢ Ado
if 67 —t; > 0 then
| A=AU{(i, k)}, Feasible = 0
end
end

end
Result: The nucleolus: x*

2.1. Preliminary experiments

Experiments over the games introduced in Puerto and
Perea (2013), with number of players ranging from 10 to 16 and
kmax = 20, are summarized in Table 2. Column “Card A” shows the
number of coalitions added in the last iteration of the algorithm
(typically 3 iterations were needed to find the nucleolus). Column
“Percentage %" reports the percentage of coalitions added in the
algorithm, over the total number of possible coalitions.

4 E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764

Table 2
Number of Cj coalitions used in
the last iteration.

n Card A Percentage %

10 10626 51.98
11 20915 51.11
12 41 623 50.83
13 83012 50.67
14 165200 5042
15 329455 5027
16 657958 50.19

We also noted that, for these instances, the total CPU time does
not vary much between the single LP and the row/column algo-
rithm. We also note that the percentage of variables d; and its
corresponding constraints included in the final iteration is roughly
50% of the total. Therefore, because less variables and constraints
than in the full LP model are needed, we expect that this sequen-
tial procedure will be able to compute the nucleolus for games
with larger number of players, with respect to the size of the
games that the full LP can address. Nevertheless, 50% of the total
number of 2" constraints is still too much, if the games considered
are large enough. This is why, in the next section we propose a
more effective approach.

3. Combining row/column generation with sampling.

In this section we modify the previous row-column genera-
tion algorithm proposed before, by starting the algorithm with a
set A=1Ix{1,..., kmax}, where I is a sample of randomly selected
coalitions (index i) and kmax represents the index k associated to
the coalition with the kpaxth largest excess, instead of A = ¢. This
came to our mind because in the first iteration of the algorithm
in Section 2, lots of coalitions were added to A, and very few
are added in the following iterations (very few constraints are vi-
olated). This might be explained by the fact that only (2n-1)
coalitions are needed for computing the nucleolus, as proved by
Granot et al. (1998), Reijnierse and Potters (1998), and therefore
only a few constraints are actually active in our LP model. There-
fore, if we start the algorithm with a set of coalitions that will lead
to an allocation close to the nucleolus, we expect that very few
constraints will be violated.

However, due to the different LP models (in the different iter-
ations) that we have to solve, the total running times of this al-
gorithm are quite similar to the running times of the original LP
model. This fact will be tested more extensively in the experiments
section, considering different sampling procedures.

3.1. A heuristic procedure based on sampling

In this section we propose a heuristic approach to compute an
allocation that is expected to be close to the nucleolus, in a rea-
sonable amount of time. Such approach consists of stopping the
previous algorithm in the first iteration. This way, we do not need
complete knowledge of the characteristic function, nor we need to
check if all possible Cj, constraints are satisfied. Note that the gain
in CPU time is immense, as we do not have to compute nor store
the exponentially increasing characteristic function. Besides, as we
will see in the experiment section, the allocations obtained are
fairly close to the true nucleolus. An added value of this method is
that one can control the size of the sigle LP problem to be solved
by means of the size of the sample taken (set I) and kmax. The only

LP problem to be solved in this heuristic approach consists of:

kmax
min Y (A — M) | K+) die (7)
k=1 il
st. dygy>60;—t,VielLk=1,..., kna, (8)
Oi=v(S) - x.Viel, (9)
JeSi
n
ij = U(N),
j=1
di >0, YVielLk=1,... knax. (10)

Note how the size of the LP problem has decreased to from 0(4")
to O(|l|kmax) variables and constraints. The reader may note that
choosing an appropriate set I is a key aspect of this algorithm.
Therefore, in the experiments section, several sampling techniques
will be applied, for selecting set I. Besides, different sample sizes
will also be tested and compared.

Other stopping criteria, like for example the number of con-
straints violated, or the proportion of such unsatisfied constraints,
etc. are indeed interesting. Unfortunately, they require the knowl-
edge of the complete characteristic function for all coalitions.
Therefore, we do not apply these stopping criteria in our heuristic
approach (which intends to find an allocation with excess vector
close to that of the nucleolus, for very large games).

As a summary of this section, we have proposed one exact al-
gorithm (which stops when the solution returned does not violate
any of the C;, constraints of the original LP problem) and a heuris-
tic algorithm (which stops after the first iteration).

4. Experiments

In this section we summarize the computational experience we
conducted in order to assess the algorithms proposed. All exper-
iments are carried out on a desktop PC, with an Intel i7 proces-
sor at 4.2 GHz, 16 GBytes of RAM, running Windows 10 Enterprise
64 bits 0S. Coding is done in GAMS 25.0.2, and the solver used is
CPLEX 12.8. The analysis of results is done with the help of RStu-
dio.

4.1. Instance generation

In order to test the algorithms proposed, we have built the fol-
lowing sets of instances:

o Random 12-player instances: a set of one hundred 12-player TU

games have been randomly generated, in such a way that:
-v(S)e{1,2,...,9}, VSCcN, S#£0,N.
- v(®) =0, v(N) =15.

e Balanced 12-player instances: a set of one hundred 12-player
games, such that they have non-empty core, built in the fol-
lowing way:

- A random allocation x¢ € Z!2 is built, in such a way that for
every player j, x; € {0, 5}, following a uniform distribution.
- The characteristic function is built in such a way that x¢ is
a core allocation, as follows: v(S) € {0, ..., Yjes x5}, for all
Se2N, S£N, and v(N) = x°(N).
Note that x°(S)>v(S),VS, and therefore the game has a non-
empty core.

e The 18-player game defined in Puerto and Perea (2013) has
been analyzed as well.

e Random 100-player instances: a set of ten 100-player TU
games, where the characteristic function is built in the same
way as the 12-player random instances.

E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764 5

4.2. Algorithm parameters

The algorithms proposed mainly depend on two factors: the
type of sampling used to generate the set I, and the size of that
set. We now detail these two factors and specify their levels con-
sidered.

o Factor 1: type of sampling. We have tested three types of sam-
pling:

1. Totally random: each coalition has the same probability of
being chosen. This is denoted as “Random” sampling, or
“Typel” sampling.

2. Sampling per size, only small: We select the same number
of coalitions of each size, only if the size is less than or
equal to n/2. Coalitions of size greater than n/2 are not cho-
sen. This is denoted as “Size_Small” sampling, or “Type2”
sampling. This is justified by Table 1, since only “small”
coalitions are binding in constraints Cj.

3. Sampling per size, all: We select the same number of coali-
tions of each size, and all sizes are eligible. This is denoted
as “Size_All” sampling, or “Type 3 sampling”.

4. Semicore sampling: All semicore coalitions (those of size 1
and those of size n — 1) are always chosen. The other coali-
tions until completing the sample are chosen randomly, like
in Type 1 sampling. This is denoted as “Semicore” sampling,
or “Type4” sampling.

o Factor 2: sample size. Regarding the sample size, we have
tested the following values:

- for the 12-player instances, |I| € {100, 200, ..., 1000} (rang-
ing from 2.4% to 24.4% of all coalitions).

- for the 18-player instance, |I| € {500, 1000, ..., 5000} (rang-
ing from 0.19% to 1.91% of all coalitions).

- for the 100-player instances, |I| € {1000,2000,...,10000}
(ranging from 7.8 - 10726% to 7.8 - 10-2°% of all coalitions)
We emphasize here that coalitions are re-sampled from one
size to the next, meaning that (for example) the 200 coalitions
sampled for size 200 do not necessarily contain the 100 coali-

tions sampled for size 100.

Combining the three types of sampling with the 10 different
sample sizes, we have in total 40 different versions of our RCG al-
gorithm and 40 versions of our heuristic.

4.3. Experiments over 12-player random instances

For each of the 100 games in the 12-player random set, the
true nucleolus has been computed by the RCG algorithm combined
with sampling (for each sample size and type of sampling), as well
as the allocation given by each of the 30 versions of our heuris-
tic, using for kmax = 20 as in Puerto and Perea (2013). Besides, in
order to check if the number of iterations of the row-column al-
gorithm depends on kpax, different values of this parameter have
been tested for the exact approach.

4.3.1. RCG results

We first analyze the results obtained for the row-column gener-
ation algorithm, for which we run the 100 instances for all sample
sizes and all sampling types described before. In order to check
if the value of kmax affects the number of iterations and/or the
CPU time of this algorithm, we also tested three different values
of kmax €{10, 20, 30}. The results are shown in Tables 3 and 4. For
each value of kpax tested, columns “Size” and “Type” refer to the
levels of these factors which define the sampling used in the first
iteration of the RCG algorithm. Column “Iter” refers to the average
number of iterations needed by the exact algorithm, and column
“Time,” refers to the CPU time used by the exact algorithm.

Table 3
Average results for the exact approach, for sampling types 1 and 2,
each sample size, and different values of kpax.

Sampling Kmax = 10 Kinax = 20 Kmax = 30

Size Type Time, Iter Time, Iter Time, Iter
100 1 5.39 6.59 5.98 6.59 7.36 6.92
200 1 3.61 518 3.81 518 4.02 4.55
300 1 1.76 205 1.83 2.05 223 2.31
400 1 1.81 209 1.86 209 264 2.79
500 1 2.18 263 225 263 263 2.63
600 1 212 249 223 249 273 2.62
700 1 230 256 2.36 256 2.63 2.40
800 1 248 278 2.56 278 3.10 2.80
900 1 2.72 3.03 282 3.03 358 2.93

1000 1 282 298 292 298 3.30 2.81

Avg. Type 1 2.72 324 286 324 342 3.28

100 2 159 146 224 1.95 159 1.46
200 2 175 388 221 380 175 3.88
300 2 1.88 357 2.88 410 1.88 3.57
400 2 202 376 3.00 4.05 2.02 3.76
500 2 212 398 286 352 212 3.98
600 2 202 3.18 3.10 3.64 2.02 3.18
700 2 215 334 3.04 342 215 334
800 2 221 319 3.50 350 221 3.19
900 2 218 275 317 323 218 2.75
1000 2 220 3.00 374 387 220 3.00
Avg. Type 2 2.01 3.21 2.97 3.51 2.01 3.21
Table 4

Average results for the exact approach, for sampling types 3 and 4,
each sample size, and different values of kpax.

Sampling Kmax = 10 Kmax =20 Kmax = 30
Size Type Time, Iter Time, Iter Time, Iter
100 3 153 138 2.00 1.77 225 1.98
200 3229 370 254 396 297 4.44
300 3 217 4.03 288 424 3.46 4.69
400 3 195 3.11 2.55 3.41 3.90 5.01
500 3 204 313 5.02 6.42 5.46 5.59
600 3 207 313 2.80 342 3.65 3.53
700 3 218 334 296 355 3.76 3.59
800 3 223 318 3.01 350 3.56 3.50
900 3 221 310 3.18 353 3.68 3.47
1000 3 224 3.01 3.06 3.19 346 3.05
Avg. Type 3 2.07 313 299 3.73 347 3.90
100 4 174 127 220 2.11 2.66 2.00
200 4 232 381 3.11 465 3.93 4.53
300 4 213 318 3.10 3.72 3.80 4.08
400 4 199 285 238 3.07 3.46 3.78
500 4 2.06 2.68 2.26 272 292 2.86
600 4 204 242 239 275 3.06 2.86
700 4 209 246 2.57 2.85 342 3.11
800 4 223 264 281 3.15 3.40 2.96
900 4 227 2.67 2.67 274 3.62 2.99
1000 4 240 288 2.85 288 3.59 2.81
Avg. Type 4 213 269 2.63 3.06 3.39 3.20

From our computational experience, we cannot conclude any
clear link between the value of kmax and the number of iterations
needed by the exact approach. It seems that the RCG algorithm
starting with Type 2 sampling yields the best average results in
terms of CPU time, for kmax € {10, 30}. Starting with Type 4 sam-
pling seems to be best for the other value of kmax. In terms of the
number of iterations, the best average results are obtained when
using Type 4 sampling, regardless the value of kyax employed.

4.3.2. Heuristics results

For each instance, and each version of our heuristic, different
outputs will be analyzed, which include the needed CPU time by
each algorithm, and the quality of the allocation x returned by the
heuristics. In order to test the quality of the solution returned by

6 E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764

Table 5

Average results over the random 12-player instances for sampling types 1 and 2, each

sample size, and Kkmax = 20.

Sampling Heuristic Exact

Size Type RD, RD, C% max q ming Timey, Time, Iter
100 1 088 018 1036 234 0.14 1.23 5.98 6.59
200 1 0.77 014 10.86 2.07 0.12 1.22 3.81 5.18
300 1 073 013 3.08 1.98 0.11 1.25 1.83 2.05
400 1 069 012 4.00 1.85 0.11 1.28 1.86 2.09
500 1 0.68 0.11 6.56 1.78 0.10 1.30 2.25 2.63
600 1 0.62 0.11 8.02 1.67 0.09 1.34 2.23 2.49
700 1 064 010 8.99 1.72 0.09 1.41 2.36 2.56
800 1 063 010 1099 1.67 0.11 1.41 2.56 2.78
900 1 063 010 11.65 1.68 0.09 1.47 2.82 3.03

1000 1 058 009 13.01 1.61 0.07 1.52 2.92 2.98

Avg. Type 1 068 012 875 1.84 0.10 1.34 2.86 3.24
100 2 062 015 215 1.58 0.09 1.22 2.24 1.95
200 2 045 0.09 210 1.21 0.08 1.21 2.21 3.80
300 2 035 0.06 453 0.96 0.04 1.24 2.88 4.10
400 2 027 004 5381 0.74 0.03 1.27 3.00 4.05
500 2 024 004 744 0.63 0.02 1.31 2.86 3.52
600 2 023 003 923 0.61 0.02 1.36 3.10 3.64
700 2 021 0.02 9.95 0.57 0.01 1.38 3.04 3.42
800 2 017 0.02 10.90 047 0.01 1.49 3.50 3.50
900 2 017 0.02 1125 046 0.00 1.56 3.17 3.23

1000 2 016 0.01 11.96 043 0.00 1.60 3.74 3.87

Avg. Type 2 029 005 7.53 0.77 0.03 1.36 2.97 3.51

Table 6

Average results over the random 12-player instances for sampling types 3 and 4, each

sample size, and kmax = 20.

Sampling Heuristic Exact
Size Type RDq RD. C% max, ming, Timey Time, Iter
100 3 071 019 163 1.74 013 122 200 177
200 3 058 0.14 1.84 1.50 0.09 1.20 2.54 3.96
300 3 050 011 331 136 007 123 288 424
400 3 045 009 482 124 008 126 255 341
500 3 035 006 859 099 004 130 502 642
600 3 030 005 643 083 004 133 280 342
700 3 027 004 785 073 003 135 296 3.55
800 3 027 004 854 076 003 140 301 3.0
900 3 025 004 1044 066 003 142 318 353
1000 3 022 003 1071 061 002 150 306 3.9
Avg. Type 3 039 008 6.42 1.04 005 132 300 370
100 4 076 021 1.08 179 016 138 220 211
200 4 066 017 243 1.61 011 139 311 465
300 4 060 014 256 148 011 143 310 3.72
400 4 061 014 505 1.51 010 147 238 3.07
500 4 058 0.13 6.33 1.48 0.10 1.51 2.26 2.72
600 4 055 011 753 1.41 010 155 239 275
700 4 054 012 921 143 009 167 257 285
800 4 050 010 1116 133 008 171 281 315
900 4 048 010 1234 131 009 170 267 274
1000 4 045 009 1289 125 007 179 285 288
Avg. Type 4 057 013 7.06 146 010 156 263 3.06
the heuristic, we compared such allocations with the true nucleo- kM (o (), —e ()2
. . . . =1 :
lus in two different ways: The first one is a measure of the relative * RDe = *—=—————. This measure values how far the vec-

deviation (RD) between the two allocations, the second is a mea-
sure of the RD between the excess vectors lexicographically sorted.
In other words, if X and x are the nucleolus and a given allocation,
and e(x) is the vector of the kmax largest excesses produced by the
allocation x, two measures we use to assess the quality of the al-
locations returned by the heuristics are:

V Zjen & =x))?
e RD, = YT 7
,/):jeNX?

from the nucleolus %, in terms of Euclidean distance.

. This measure values how far allocation x is

VI e}
tor x is from the nucleolus X, in terms of their excess vectors
lexicographically sorted.

The metrics RD, and RD, should not be interpreted as percent-
ages. Actually, they measure the distance between x and X (RD,)
and between the excess vector of the nucleolus e(X) and the ex-
cess vector of the given allocation e(x)(RD.). They are normalized
in such a way that, if they take value one, then x (or e(x)) is as
far from % (e(X)) as the norm of X (e(X)). One could see these two
metrics as the GAP of mathematical programs, which can take any
non-negative value.

E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764 7

Table 7
Average results over 100 12-player balanced instances for sam-
pling types 1 and 2, and each sample size.

Sampling Heuristic

Size Type RD, RD, C% R% Timey,

100 1 0.31 13.21 3833 596 138
200 1 0.14 6.12 3217 332 1.40
300 1 0.07 3.13 2039 1.83 1.44
400 1 0.02 0.87 9.38 0.54 147
500 1 0.01 0.26 2.44 0.12 1.50
600 1 0.00 0.16 1.62 0.08 1.54
700 1 0.00 0.00 0.91 0.00 1.60
800 1 0.00 0.00 0.57 0.00 1.62
900 1 0.00 0.00 0.80 0.00 1.68
1000 1 0.00 0.00 0.58 0.00 1.72

Avg. Type 1 0.06 238 10.72 1.18 1.53

1000 0.00 0.00 1.81 0.00 1.80

100 2 021 8.93 29.62 418 1.41
200 2 006 251 13.23 130 142
300 2 002 072 3.76 0.32 1.45
400 2 000 0.10 2.81 0.04 148
500 2 000 012 2.76 0.05 1.54
600 2 0.00 0.04 0.14 0.01 1.55
700 2 0.00 0.00 0.07 0.00 1.63
800 2 0.00 0.00 0.18 0.00 1.65
900 2 0.00 0.00 0.42 0.00 1.70

2

2

Avg. Type 003 124 548 059 1.56

Table 8
Average results over 100 12-player balanced instances for sam-
pling types 3 and 4, and each sample size.

Sampling Heuristic

Size Type RDq RD, C% R% Time,

100 3 028 1181 2869 510 135
200 3 012 505 1671 250 134
300 3 005 224 1032 116 137
400 3 002 086 394 043 139
500 3 000 012 104 005 141
600 3 000 004 044 003 144
700 3 000 000 003 000 148
800 3 000 000 029 000 152
900 3 000 000 065 000 155
1000 3 000 000 209 000 162
Avg. Type 3 005 201 642 093 145
100 4 031 1299 3269 558 148
200 4 014 597 2387 301 149
300 4 006 235 1114 133 152
400 4 002 08 563 049 155
500 4 001 033 426 018 1.59
600 4 000 010 067 005 161
700 4 000 003 034 002 167
800 4 000 000 009 000 1.69
900 4 000 000 051 000 173
1000 4 000 000 086 000 181
4

Avg. Type 005 226 8.01 1.07 161

Besides, we also checked how many Cj, constraints are violated
by the allocation given by the heuristic, and the absolute compo-
nentwise deviations between the true nucleolus and the alloca-
tions given by our heuristic.

The average results obtained by our heuristic approach, over
the 100 random 12-player instances, for each sample size and
each type of sampling, applying kmax = 20, are summarized in
Tables 5 and 6. Besides the columns already defined for the pre-
vious table, columns “RD,”, “RD.” and “Time,” show the average
values of the two relative deviations computed, as well as the av-
erage time needed (in seconds) by the heuristic. Column “C %”
shows the average percentage of constraints C; violated, whereas
columns “max_a” and “min_a” show the maximum and minimum

Table 9
Results over the 18-player instance for sampling types 1 and 2, each sample size,
kmax = 30.

Sampling Heuristic

Size Type RD, RD, RD; C% max g min, Timey,

500 1 0.31 10.74 036 3327 0.04 0.00 4.40
1000 1 020 479 0.16 23.09 0.03 0.00 8.24
1500 1 024 476 0.16 22.73 0.02 0.00 12.16
2000 1 020 4.18 0.14 3175 0.03 0.00 16.63
2500 1 017 271 0.09 21.60 0.03 0.00 19.23
3000 1 0.16 3.13 0.10 29.78 0.02 0.00 24.28
3500 1 0.23 4.06 0.14 20.00 0.03 0.00 30.38
4000 1 0.15 2,65 0.09 19.02 0.02 0.00 32.26
4500 1 020 3.50 0.12 2060 0.02 0.00 37.06
5000 1 0.18 3.15 0.11 1697 0.03 0.00 44.04

Avg. Type 1 020 437 0.15 2388 0.03 0.00 22.87

5000 0.08 1.57 0.05 23.89 0.01 0.00 23.65

500 2 012 232 0.08 2324 0.02 0.00 2.71
1000 2 022 584 0.19 3286 0.02 0.00 4.70
1500 2 014 363 0.12 2259 0.02 0.00 6.83
2000 2 013 205 0.07 31.52 0.02 0.00 9.33
2500 2 013 234 0.08 30.57 0.02 0.00 10.83
3000 2 015 344 0.11 20.62 0.03 0.00 12.72
3500 2 010 223 0.07 28.22 0.02 0.00 25.06
4000 2 0.08 108 0.04 26.87 0.01 0.00 18.58
4500 2 012 214 0.07 22.88 0.02 0.00 30.27

2
2

Avg. Type 0.13 2.66 0.09 2633 0.02 0.00 14.47

Table 10
Results over the 18-player instance for sampling types 3 and 4, each sample size,
kmax = 30.

Sampling Heuristic

Size Type RD, RD, RD; C% maxg min, Timey,

500 3 025 6388 023 2320 0.03 0.00 2.70
1000 3 015 244 0.08 2292 0.02 0.00 5.87
1500 3 009 236 0.08 2249 0.02 0.00 6.75
2000 3 012 138 0.05 3133 0.01 0.00 9.54
2500 3 015 478 0.16 21.24 0.02 0.00 10.52
3000 3 008 228 0.08 29.21 0.01 0.00 12.77
3500 3 009 231 0.08 2795 0.01 0.00 17.30
4000 3 010 1.73 0.06 2125 0.02 0.00 17.92
4500 3 011 2.80 0.09 22,60 0.01 0.00 23.43
5000 3 011 2.06 0.07 16.51 0.02 0.00 23.06
Avg. Type 3 013 290 0.10 23.87 0.02 0.00 12.99

500 4 044 1479 049 33.11 0.06 0.00 5.31
1000 4 028 753 0.25 2285 0.03 0.00 8.82
1500 4 024 561 0.19 3199 0.03 0.00 12.81
2000 4 023 513 017 21.78 0.02 0.00 16.88
2500 4 024 474 0.16 21.07 0.04 0.00 20.42
3000 4 021 4.07 0.14 2895 0.02 0.00 26.30
3500 4 018 2389 0.10 27.65 0.02 0.00 30.48
4000 4 019 348 0.12 1834 0.02 0.00 33.57
4500 4 022 4.05 0.14 17.30 0.03 0.00 40.45
5000 4 017 313 0.10 16.21 0.02 0.00 42.49
Avg. Type 4 024 554 0.19 2393 0.03 0.00 23.75

deviation between the heuristic allocation and the nucleolus, re-
spectively.

In Tables 5 and 6 we obviously observe how the quality of the
solutions found increases with the sample size, for each type of
sampling tested, as both RD, and RD. decrease with the sample
size. We also observe how the computational effort to find such
allocations increases smoothly.

Our algorithms aim at finding allocations that are close to the
“concept of nucleolus” (lexicographical minimization of the excess
vector) and not close to the “nucleolus as an allocation”. Since RDq
measures the distance between allocations, and RD, measures the
distance between excess vectors, it is logical that RD, does not
show as good results as RD, does.

8 E Perea and J. Puerto/Computers and Operations Research 112 (2019) 104764

Table 11

Average CPU-times in sec-
onds over the 100-player in-
stances, for each sample size

tested.

Sample size ~ CPU time
1000 2.16
2000 4.44
3000 8.80
4000 13.54
5000 26.26
6000 27.24
7000 36.03
8000 52.31
9000 57.52
10,000 69.27

4.4. Experiments over 12-player balanced instances

Another metric that could assess the quality of the allocation
returned by the heuristic is, for balanced games, the proportion of
rationality constraints violated. The average results of these exper-
iments are shown in Table 7 and 8, where column “R %” shows the
average number of rationality constraints violated by the allocation
returned.

A first conclusion after these results is that the nucleolus is
found if the sample size is greater than 700 or 800, depending on
the sampling type. This minimum sample size required is between
700 and 800, depending on the sampling type. These results are

extremely good, and suggest that, whenever the core is non-empty,
our heuristic procedure finds the nucleolus quite easily.

4.5. Experiments over medium instances

In this section we analyze our heuristic procedure over the 18-
player instance as presented and solved in Puerto and Perea (2013),
for which we know the true nucleolus. Tables 9 and 10 show the
results of our heuristic procedure, using the four sampling strate-
gies suggested, and ten different sample sizes ranging from 500 to
5000. Parameter kmax is set to 30, as in Puerto and Perea (2013).

In this table we have added a new column “RD}”, to correct
the fact that since the norm of the excess vector yielded by the
nucleolus is too small (really close to zero), the numbers given
in column “RD.” are somehow affected by this small denominator.

Therefore, RD; = RD3(,/ Zgjg" e(®)2). In this game, ,/ Z;:gx e(®)?2 =
0.03338436.

The results confirm that our heuristic procedures can find allo-
cations close to the nucleolus in a reasonable amount of time also
for this larger game. The CPU time needed increases linearly with
the sample size. The best results in terms of relative deviations are
obtained with sampling type 2, in which only small coalitions are
sampled.

4.6. Experiments over 100-player instances

These instances are randomly generated in such a way that only
the data for the sampled coalitions (applying Type 1) is stored. The

Heuristic over 100-player instances

70

60

50

40

Seconds

10
|

2000 4000

T T I
6000 8000 10000

Sample size

Fig. 1. Evolution of average CPU time used as a function of sample size, for each type of sampling, in the heuristic approach for the 100-player instances.

E Perea and]. Puerto/Computers and Operations Research 112 (2019) 104764 9

reader may note that storing the characteristic function and the
coalition membership for 2190 = 1.267651e + 30 coalitions would
be a real challenge, and therefore applying the exact approach
seems impossible. The only purpose of this section is to show how
one can obtain an allocation based on the proposed methodology
for large games. Table 11 shows the average CPU time needed for
our heuristic procedure to find an allocation (in seconds) for the
different values of sample size tested. We observe in Fig. 1 how
the increase in running times with respect to the size of the sam-
ple taken seems linear. In order to test the latter claim, we built
a simple linear regression model to explain the average CPU time
of the heuristic as a function of the sample size, which yielded
significant parameters and a coefficient of determination of 0.9639
(96.39% of the variability in CPU time is explained by the sample
size). Such large coefficient of determination supports that the CPU
time increases only linearly with the sample size.

5. Conclusions

In this paper, we have introduced a row/column generation ap-
proach combined with sampling in order to find the nucleolus of
any TU game. However, since the CPU time of this algorithm is
only acceptable for relatively small instances, we have also pro-
posed a heuristic approach for finding the nucleolus. Although
both the literature on the nucleolus and the literature on heuris-
tic and metaheuristic algorithms are vast, the combination of both
disciplines is rather limited and does not include any serious anal-
ysis. We believe that, in order to compute the nucleolus for large
games (which is more and more common in the current competing
world) algorithms that are fast will be needed, even if the alloca-
tion returned is not guaranteed to be the true nucleolus. There-
fore, we consider this piece of research as a first avenue for the
interaction between heuristics and the nucleolus, which will surely
gain more and more attention from the scientific community in the
near future.

The heuristics proposed consist of sampling the set of coali-
tions, and solving a LP-model previously introduced in the liter-
ature for the nucleolus, considering only the coalitions chosen. The
results obtained with this approach are quite satisfactory, as the
allocations returned are close to the true nucleolus, as we tested
over 12-player instances. Besides, our heuristics are capable of ob-
taining an allocation, which is also expected to be close to the
nucleolus, in a reasonable amount of time for large games (we
tested 100-player games). Specially good results are obtained when
the corresponding game has non-empty core. In such balanced
games with 12 players, the true nucleolus was always found by
our heuristic procedure using relatively small sample sizes.

Further research on the nucleolus will necessarily focus on the
search for fast algorithms for finding this allocation, or allocations
close to it (as is the case of this paper).

Both quality measures used to assess the quality of the solu-
tions returned by the heuristic are computed with respect to the
origin. A different approach, in which the denominator considers
some problem-specific point (e.g. the “centre” of the imputation
set) is worth being explored. As mentioned in the experiments sec-
tion, a disadvantage of using the distance relative to the origin is
that the denominator is very close to zero. In fact, there are games
with arbitrarily small or large denominator, which makes the mea-
sures considering the origin less meaningful. Therefore, further re-
search will also focus on the search for new measures for assessing
the quality of the solutions returned.

Acknowledgments

The authors would like to acknowledge the support from Span-
ish “Ministerio de Economia y competitividad” throughout grant

number MTM2016-74983 and grant “SCHEYARD - Optimization of
Scheduling Problems in Container Yards” (No. DPI2015-65895-R) fi-
nanced by FEDER funds. Special thanks are due to two anonymous
referees for their valuable comments.

References

Aiche, A., Rubinchik, A., Shitovitz, B., 2015. The asymptotic core, nucleolus and Shap-
ley value of smooth market games with symmetric large players. Int. J. Game
Theory 44 (1), 135-151.

Baiou, M., Barahona, E, 2017. On the nucleolus of shortest path games. Lect. Notes
Comput. Sci. 10504, 55-66.

Branzei, R, Ifiarra, E., Tijs, S., Zarzuelo, J., 2006. A simple algorithm for the nucleolus
of airport profit games. Int. J. Game Theory 34 (2), 259-272.

van den Brink, R., Katsev, I., van der Laan, G., 2011. A polynomial time algorithm
for computing the nucleolus for a class of disjunctive games with a permission
structure. Int. J. Game Theory 40 (3), 591-616.

Chin, H.H., 1997. Game Theoretical Applications to Economics and Operations Re-
search. Genetic Algorithm for Finding the Nucleolus of Assignment Games.
Springer, Boston, MA.

Deng, X., Fang, Q., Sun, X., 2009. Finding nucleolus of flow game. J. Comb. Optim.
18 (1), 64-86.

Dragan, 1., 1981. A procedure for finding the nucleolus of a cooperative n person
game. Zeitschrift fiir Oper. Res. 25, 119-131.

Fang, Q., Li, B., Shan, X, Sun, X., 2015. The least-core and nucleolus of path cooper-
ative games. Lect. Notes Comput. Sci. 9198, 70-82.

Fang, Q., Li, B, Sun, X, Zhang,]., Zhang,]., 2016. Computing the least-core and
nucleolus for threshold cardinality matching games. Theor. Comput. Sci. 609,
500-510.

Flisberg, P, Frisk, M., Ronnqvist, M., Guajardo, M., 2015. Potential savings and cost
allocations for forest fuel transportation in Sweden: a country-wide study. En-
ergy 85, 353-365.

Granot, D., Granot, F, Zhu, W.R,, 1998. Characterization sets for the nucleolus. Int. J.
Game Theory 27 (3), 359-374.

Greco, G., Malizia, E., Palopoli, L., Scarcello, F., 2014. The complexity of the nucleolus
in compact games. ACM Trans. Comput. Theory 7 (1), 52pages.

Guajardo, M., Jornsten, K., 2015. Common mistakes in computing the nucleolus. Eur.
J. Oper. Res. 241, 931-935.

Hallefjord, A., Helming, R., Jornsten., K., 1995. Computing the nucleolus when the
characteristic function is given implicitly: a constraint generation approach. Int.
J. Game Theory 24, 357-372.

Hamers, H., Klijn, F, Solymosi, T,, Tijs, S., Vermeulen, D., 2003. On the nucleolus of
neighbor games. Eur. J. Oper. Res. 146 (1), 1-18.

Hou, D., Driessen, T., 2015. Determining the nucleolus of compromise stable games.
Bull. Aust. Math. Soc. 92 (3), 488-495. doi:10.1017/S0004972715001045.

Kamiyama, N., 2015. The nucleolus of arborescence games in directed acyclic graphs.
Oper. Res. Lett. 43 (1), 89-92.

Kimms, A., Cetiner, D., 2012. Approximate nucleolus-based revenue sharing in air-
line alliances. Eur. J. Oper. Res. 220, 510-521.

Kohlberg, E., 1972. The nucleolus as a solution of a minimization problem. SIAM
JAM 23, 34-39.

Kurz, S., Napel, S., Nohnc, A., 2014. The nucleolus of large majority games. Econ.
Lett. 123, 139-143.

Martinez-De-Albéniz, F., Rafels, C., Ybern, N., 2013. A procedure to compute the nu-
cleolus of the assignment game. Oper. Res. Lett. 41 (6), 675-678.

Maschler, M., Peleg, B., Shapley, L., 1979. Geometric properties of the kernel, nucle-
olus and related solution concepts. Math. Oper. Res. 4 (4), 303-338.

Maschler, M., Potters, J., Reijnierse, H., 2010. The nucleolus of a standard tree game
revisited: a study of its monotonicity and computational properties. Int. J. Game
Theory 39 (1), 89-104.

Nguyen, T.-D., Thomas, L., 2016. Finding the nucleoli of large cooperative games. Eur.
J. Oper. Res. 248, 1078-1092.

Owen, G., 1974. A note on the nucleolus. Int.]. Game Theory 3, 101-103.

Owen, G., 1995. Game Theory. Academic Press, Inc. London.

Potters, J.A.M., Reijnierse, J., Ansing, M., 1996. Computing the nucleolus by solving a
prolonged simplex algorithm. Math. Oper. Res. 21, 757-768.

Puerto, J., Perea, F, 2013. Finding the nucleolus of any n-person cooperative game
by a single linear program. Computers and Operations Research 40, 2308-2313.

Reijnierse, H., Potters, J., 1998. The B-nucleolus of TU-games. Games Econ. Behav. 24
(1-2), 77-96.

Sankaran, J., 1991. On finding the nucleolus of an n-person cooperative game. Int. J.
Game Theory 19, 329-338.

Solymosi, T., 1993. On Computing the Nucleolus of Cooperative Games. University
of Illinois at Chicago Ph.D. thesis.

Solymosi, T., Raghavan, T., Tijs, S., 2005. Computing the nucleolus of cyclic permu-
tation games. Eur. J. Oper. Res. 162 (1), 270-280.

Sziklai, B., Fleiner, T., Solymosi, T., 2017. On the core and nucleolus of directed
acyclic graph games. Math. Program. Ser. A 163, 243-271.

Wang, Y., Yin, Z, Li, Y., 2017. The application of data-process interaction model in
cost allocation. Acad. . Manuf. Eng. 15 (3), 129-138.

Yu, Y., Lou, Q., Tang, J., Wang, J., Yue, X., 2017. An exact decomposition method
to save trips in cooperative pickup and delivery based on scheduled trips and
profit distribution. Comput. Oper. Res. 87, 245-257.

https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0001
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0001
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0001
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0001
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0002
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0002
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0002
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0003
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0003
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0003
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0003
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0003
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0004
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0004
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0004
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0004
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0005
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0005
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0006
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0006
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0006
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0006
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0007
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0007
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0008
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0008
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0008
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0008
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0008
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0009
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0010
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0010
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0010
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0010
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0010
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0011
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0011
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0011
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0011
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0012
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0012
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0012
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0012
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0012
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0013
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0013
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0013
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0014
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0014
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0014
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0014
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0015
https://doi.org/10.1017/S0004972715001045
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0017
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0017
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0018
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0018
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0018
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0019
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0019
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0020
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0020
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0020
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0020
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0021
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0021
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0021
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0021
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0022
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0022
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0022
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0022
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0023
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0023
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0023
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0023
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0024
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0024
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0024
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0025
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0025
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0026
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0026
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0027
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0027
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0027
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0027
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0028
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0028
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0028
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0029
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0029
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0029
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0030
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0030
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0031
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0031
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0032
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0032
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0032
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0032
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0033
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0033
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0033
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0033
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0034
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0034
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0034
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0034
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035
https://refhub.elsevier.com/S0305-0548(19)30206-0/sbref0035

	A heuristic procedure for computing the nucleolus
	1 Introduction
	2 A column/row generation algorithm
	2.1 Preliminary experiments

	3 Combining row/column generation with sampling.
	3.1 A heuristic procedure based on sampling

	4 Experiments
	4.1 Instance generation
	4.2 Algorithm parameters
	4.3 Experiments over 12-player random instances
	4.3.1 RCG results
	4.3.2 Heuristics results

	4.4 Experiments over 12-player balanced instances
	4.5 Experiments over medium instances
	4.6 Experiments over 100-player instances

	5 Conclusions
	Acknowledgments
	References

