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a b s t r a c t 

This paper introduces a row and column generation algorithm for finding the nucleolus, based on a linear 

programming model proposed in an earlier research. Since this approach cannot return an allocation for 

large games, we also propose a heuristic approach, which is based on sampling the coalitions space. 

Experiments over medium sized games show that the proposed heuristic finds allocations which are close 

to the true nucleolus, in a reasonable amount of time. Experiments over 100-player games show that the 

proposed heuristic can be applied to games of large size. 
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. Introduction 

A transferable utility (TU) game can be defined by means of: 

• A set of players N = { 1 , . . . , n } . Players are allowed to cooperate,

but their objective is to maximize their own individual benefit. 
• For each coalition S ⊂ N , the characteristic function v ( S ) repre-

sents the profit that the cooperation of the players in S yields,

without the help of the other N �S players. The set of all players

N is referred to as the grand coalition . 

TU-games can therefore be identified by means of their set of

layers and characteristic function: ( N, v ). 

One of the main challenges in TU-games consists of sharing the

rofit that the grand coalition can make, among the different play-

rs. There are two main ways to address that question: 

1. Using solution sets. 

2. Using allocation rules. 

The most well-known representative of the first type is the core

 Owen, 1995 ). The core of a TU-game is defined as 

(v ) = { x ∈ R 

n : x (S) ≥ v (S) ∀ S ⊂ N, x (N) = v (N) } . 
ore allocations ensure that each coalition S gets a share of the

rofit obtained by the grand coalition which is, at least, as high as

he profit that S can make on their own. Thus, core allocations are

ell accepted due to the fairness conditions they satisfy. 
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However, there are games without core allocations. Even for

ome games which do have core allocations, it might be very diffi-

ult to find them or, choose one among them. Therefore, at times

ne is interested in the second type of solutions: Allocation rules.

llocation rules are procedures that allocate to each player a share

f the benefit obtained by the grand coalition. Two important such

ules are the Shapley value and the nucleolus, which are well ac-

epted for the properties they satisfy, and are widely used in com-

lex TU-games (e.g. see Yu et al., 2017 , where the Shapley value is

omputed in a pickup and delivery cooperative game). The reader

hould note that the Shapley value belongs to the core when the

ame is convex, and the nucleolus belongs to the core whenever

he core is non-empty. 

In this paper, we focus on the nucleolus ( Kohlberg, 1972 ), which

e now introduce for the sake of completeness. 

Given a TU-game ( N, v ), the set of pre-imputations ˜ V and im-

utations V of the game are: 

˜ 
 = 

{ 

x ∈ R 

n : 

n ∑ 

j=1 

x j = v (N) 

} 

, 

 = 

{ 

x ∈ R 

n : 

n ∑ 

j=1 

x j = v (N) , x j ≥ v ({ j} ) , ∀ j ∈ N 

} 

. 

ote that V ⊂ ˜ V . Given a pre-imputation x ∈ 

˜ V , the excess vector of

 is the vector θ (x ) ∈ R 

2 n −2 

(x ) = (e (S, x )) , with e (S, x ) = v (S) −
∑ 

i ∈ S 
x i ∀ S ⊂ N, S � = ∅ , N. 

fter introducing these two concepts, the nucleolus can be defined.

https://doi.org/10.1016/j.cor.2019.104764
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Definition 1.1. The (pre)nucleolus is the unique (pre)imputation

that lexicographically minimizes ( < L ) the non-increasingly sorted

excess vector. 

The nucleolus satisfies the following two properties: 

• If e ( S, x ) ≤ 0 ∀ S ∈ 2 N , then x is a core allocation. 
• Provided the core is non-empty, the nucleolus is a core alloca-

tion. 

Despite the huge complexity of computing the nucleolus, sev-

eral attempts have been made in order to compute this solu-

tion concept by means of a single linear programming (LP) model.

Kohlberg (1972) computes the nucleolus from a LP problem with

O (2 n !) constraints. A bit later, Owen (1974) reduces the size of this

problem to O (4 n ) constraints and O (2 n ) variables with large con-

straint coefficients. Puerto and Perea (2013) propose another sin-

gle LP problem for computing the nucleolus, with coefficients in

{−1 , 0 , 1 } . 
The extreme complexity of the computation of the nucleolus

has provoked that more attempts have been made in the area of it-

erative approaches. To cite a few, Maschler et al. (1979) propose an

algorithm that solves O (4 n ) LP problems with O (2 n ) variables and

constraints, whose coefficients are −1 , 0, or 1. Dragan (1981) finds

the nucleolus by solving at most n − 1 LP problems with O ( n ) con-

straints and O (2 n ) variables. Sankaran (1991) proposes a new al-

gorithm that needs O (2 n ) LP problems whose coefficients are −1 ,

0, or 1. Solymosi (1993) proves that the nucleolus can be found

by solving at most n − 1 LP’s with O ( n ) constraints and O (2 n )

variables. Later on, Hallefjord et al. (1995) introduce a constraint

generation approach. Potters et al. (1996) describe a fast algo-

rithm to find the nucleolus of any game with non-empty impu-

tation set, based on solving at most n − 1 LP’s with at most 2 n +
n − 1 constraints and 2 n − 1 variables. More recently, Nguyen and

Thomas (2016) use nested linear programs in their approach to

find the nucleolus of large games. The list of references includ-

ing exact procedures for finding the nucleolus is very large. How-

ever, it must be noted that not all the articles published propose

correct procedures to find the nucleolus, as can be derived from

Guajardo and Jörnsten (2015) . The authors of that paper show mis-

takes in some of the algorithms proposed in the literature. 

In general, finding the nucleolus is a problem of exponen-

tial complexity. However, for some classes of games this solu-

tion concept can be found efficiently. We now review (non ex-

haustively) the literature dealing with the nucleolus for specific

classes of games. Hamers et al. (2003) prove that the nucleolus

of neighbor games can be computed by a cuadratic-order algo-

rithm. Solymosi et al. (2005) study the nucleolus of permutation

games, and prove its polynomial complexity under certain condi-

tions. Brânzei et al. (2006) propose a cuadratic algorithm for com-

puting the nucleolus of airport games. Deng et al. (2009) prove

that the nucleolus of flow games can be computed in poly-

nomial time, only when the game is defined on simple net-

works. Maschler et al. (2010) study the nucleolus of tree games.

van den Brink et al. (2011) propose a polynomial time algorithm

for computing the nucleolus of games in which some players

need permission from other players, in order to enter the game.

Martínez-De-Albéniz et al. (2013) compute the nucleolus of assign-

ment games. Greco et al. (2014) characterize the complexity of the

nucleolus on compact coalitional games. Kurz et al. (2014) study

the nucleolus of majority games. Hou and Driessen (2015) use

the indirect function of a cooperative game in characteristic func-

tion form in order to compute the nucleolus of compromise sta-

ble games. Kamiyama (2015) studies the nucleolus of arborescence

games, proving that it can be found polynomially when the graph

is acyclic and directed. Aiche et al. (2015) examine the nucleolus

of a class of market games, and compare it with the Shapley value.
ang et al. (2015) propose a polynomial time algorithm for the nu-

leolus of path cooperative games. Fang et al. (2016) compute the

ucleolus for threshold cardinality matching games, which is done

olynomially for some types of graphs. Sziklai et al. (2017) study

he nucleolus of directed acyclic graph games. Baïou and Bara-

ona (2017) propose a polynomial time algorithm for computing

he nucleolus of shortest path games. 

Despite the vast literature proposing exact methods for com-

uting the nucleolus, we have barely found three references that

ropose non-exact approaches for this solution concept, or vari-

tions of it. Chin (1997) proposes a genetic algorithm for com-

uting the nucleolus of the specific class of assignment games.

imms and Çetiner (2012) suggest a heuristic variation of an al-

orithm they propose for computing the nucleolus, which is based

n constraint generation. However, the authors of that paper dis-

ard this heuristic approach because “there is no guarantee that

sing a heuristic would be more efficient” than the exact approach.

lisberg et al. (2015) propose cost allocation methods to solve cost

haring problems in a forest fuel transportation problem. Among

hem, they adapt the nucleolus when the characteristic function is

ncomplete. Wang et al. (2017) propose several nucleolus-based al-

ocations, and a genetic algorithm for finding them. 

As can be seen there is lack of good heuristic procedures that

an provide reasonable approximations of the nucleolus for general

urpose TU games, and this is one of the major motivations of this

ork. 

Arguably, the nucleolus is one of the most well-known alloca-

ion rules in cooperative game theory. At the same time, its huge

omputational complexity has prevented many practitioners from

pplying it. Consider for example a game in which the players are

he n bank entities operating on a given region. The characteristic

unction of each coalition would be the cost for these banks to op-

rate an ATM network needed to serve their clients. Whenever n

s large enough (for example n = 50 , which is a realistic number

or this example), even getting and storing the characteristic func-

ion of the game would be a hard task, not to mention finding the

xcess vector, sorting it, etc. For this reason, in this paper we in-

roduce a heuristic approach for finding the nucleolus of a game,

hich does not rely on the complete knowledge of the character-

stic function. Heuristic algorithms are efficient procedures which

nd a solution to a problem in a reasonable amount of time, al-

hough the solution returned is not guaranteed to be optimal. In

ur case, the allocation returned by the heuristic proposed is not

uaranteed to be the nucleolus. However, as we will see in the ex-

eriments section, the allocation returned by our heuristic is close

o the true nucleolus. 

The rest of this paper is structured as follows. We begin by in-

roducing a variable/constraint generation algorithm in Section 2 ,

ased on the LP model introduced in Puerto and Perea (2013) . Be-

ause this approach does not seem very promising, especially for

arge games, we add a sampling phase to it in Section 3 . In the

ame section, we propose a heuristic approach, which aims at find-

ng an allocation close to the nucleolus, for large games in which

xact procedures cannot be applied. All approaches proposed are

omputationally tested in Section 4 , over a number of games ran-

omly generated. The paper closes with some conclusions and the

ist of references. 

. A column/row generation algorithm 

Puerto and Perea (2013) proved that the nucleolus can be found

y means of the following LP problem: 

in 

2 n −2 ∑ 

k =1 

(λk − λk +1 ) 

( 

kt k + 

2 n −2 ∑ 

i =1 

d ik 

) 

(1)
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Table 1 

Percentage of binding C ik constraints in LP mod- 

els. 

n Percentage % Distribution 

10 0.04 (1,4,3,1,0,...) 

11 0.02 (0,7,1,1,1,0,...) 

12 0.01 (0,5,1,1,1,0,...) 

13 < 0.01 (0,7,1,2,2,0,0,0,1,0...) 

14 < 0.01 (0,5,0,3,2,0,1,1,0,...) 

15 < 0.01 (0,6,1,3,1,0,1,1,2,0,...) 

16 < 0.01 (0,7,1,2,0,1,2,0,3,0,...) 
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P  

k  

n  

(  

“  

a

 . t . d ik ≥ θi − t k , ∀ i, k = 1 , . . . , 2 

n − 2 , (2)

θi = v (S i ) −
∑ 

j∈ S i 
x j , ∀ i = 1 , . . . , 2 

n − 2 , (3)

n ∑ 

j=1 

x j = v (N) , 

d ik ≥ 0 , ∀ i, k = 1 , . . . , 2 

n − 2 , (4) 

ith parameters λ satisfying that λk = δk −1 , k = 1 , . . . , 2 n − 2 , for a

onvenient choice of δ, and λ2 n −1 = 0 . Note that finding a proper

alue of δ is key. Choosing a value too large might provoke numer-

cal inaccuracy, whereas choosing a value too small might lead to
k being considered as zero by computer precision, even for small

alues of k . 

In this LP problem, indexes i and k both refer to coalitions,

hereas index j refers to players. Variable x j stands for the alloca-

ion assigned to player j , variable θ i refers to the excess of coalition

 , and variable t k is the k th excess, lexicographically sorted. There

s no straightforward interpretation of d ik . 

The enormous number of variables and constraints makes this

odel intractable for a relatively large number of players (the

forementioned paper only reports results over 18-player games or

ess). Note that there are O (4 n ) variables d ik and constraints (2) . We

enote C ik the constraint (2) for a given i and a given k . 

One immediate question that comes to our mind is: how many

onstraints C ik are binding in the optimal solution to this LP

odel? In this paper, we say that a constraint is binding if it

oes not have any slack. Note that our concept of binding con-

traint does not require that all potentially multiple solutions are

inding on this constraint. Therefore, in this case, C ik is binding

f d ik = θi − t k . Note that, if a constraint C ik is not binding, then

he corresponding d ik = 0 . This is due to the fact that since we

re minimizing, and λk − λk +1 > 0 , if θi − t k ≥ 0 , then d ik attains

his value and the constraint is binding. Otherwise, d ik = 0 and the

onstraint is not binding. In the latter case, no need to define non-

inding C ik constraints, nor their corresponding d ik variables. In or-

er to gain more insights into this matter, we solved the LP models

or the games in Puerto and Perea (2013) , and checked how many

 ik constraints were binding, considering only the first k max = 20

argest excesses, that is, k = 1 , . . . , k max . The results of this experi-

ent are shown in Table 1 . 

Column “Percentage” indicates the relative frequency of C ik con-

traints which are binding (all of them way below 1%). Column

Distribution” indicates the number of binding constraints C ik in

erms of the size of the coalitions i that make these constraints

inding. The j th component of each such vector is the number

f constraints of size j which are binding. For example, for the

ame with 10 players, one coalition with one player is binding,

our coalitions with two players are binding, three coalitions with

hree players are binding, and one coalition with four players is

inding (for larger coalitions, none of them is binding, which is in-

icated by “... ”). 
These results show a promising conclusion: only very few C ik 
onstraints are binding. Besides, we have an indication that most of

hese binding constraints correspond to coalitions i with a “small”

ize. However, how to find these pairs ( i, k ) such that C ik is bind-

ng? 

A first approach to try to answer such question consists of in-

roducing variables d ik and constraints C ik only when the corre-

ponding C ik constraint is violated, a so called row-column gen-

ration algorithm (RCG). For this, define the set A ⊂ 2 N × 2 N . A pair

 i, k ) is in A if the corresponding variable d ik and constraint C ik are

n the model. The LP programs to be solved in the iterative method

e present are: 

in 

2 n −2 ∑ 

k =1 

( λk − λk +1 ) 

( 

kt k + 

∑ 

i :(i,k ) ∈ A 
d ik 

) 

(5) 

P (A ) : s . t . d ik ≥ θi − t k ∀ (i, k ) ∈ A, 

(3) and (4) 

d ik ≥ 0 ∀ (i, k ) ∈ A, (6) 

ith λk = δk −1 , k = 1 , . . . , 2 n − 2 and λ2 n −1 = 0 . This problem is de-

oted as LP ( A ). 

Note that the previous model implies that d ik = 0 for all ( i,

 ) �∈ A , since λk − λk +1 > 0 , and d ik must be non-negative. The al-

orithm first sets A = ∅ . Then it updates A to include those ( i,

 ) �∈ A such that θi − t k > 0 (note that, for these pairs, d ik < θi − t k 
nd therefore this constraint would be violated in the original LP).

he process is repeated until there are no more constraints vio-

ated. When such convergence is achieved, the solution returned is

he nucleolus. This is true because the optimal solution to the re-

axed problem (the one in which not all constraints are necessarily

resent) satisfies all the constraints (even those which are not im-

osed) of the full problem. Therefore, the optimal solution to the

elaxed problem is also an optimal solution to the full problem. As

roved in Puerto and Perea (2013) , the optimal solution to the full

roblem is the nucleolus. 

Algorithm 1 shows a pseudocode of this method. 

Algorithm 1: Pseudo-code of the row/column generation al- 

gorithm for computing the nucleolus. 

Data : The characteristic function of a game 

Feasible = 0, A = ∅ ; 
while Feasible = 0 do 

Feasible = 1; 

solve LP (A ) → x ∗, t ∗, θ ∗; 

for i, k : (i, k ) / ∈ A do 

if θ ∗
i 

− t ∗
k 

> 0 then 

A = A ∪ { (i, k ) } , Feasible = 0 

end 

end 

end 

Result : The nucleolus: x ∗

.1. Preliminary experiments 

Experiments over the games introduced in Puerto and

erea (2013) , with number of players ranging from 10 to 16 and

 max = 20 , are summarized in Table 2 . Column “Card A” shows the

umber of coalitions added in the last iteration of the algorithm

typically 3 iterations were needed to find the nucleolus). Column

Percentage %” reports the percentage of coalitions added in the

lgorithm, over the total number of possible coalitions. 
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Table 2 

Number of C ik coalitions used in 

the last iteration. 

n Card A Percentage % 

10 10 626 51.98 

11 20 915 51.11 

12 41 623 50.83 

13 83 012 50.67 

14 165 200 50.42 

15 329 455 50.27 

16 657 958 50.19 
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way as the 12-player random instances. 
We also noted that, for these instances, the total CPU time does

not vary much between the single LP and the row/column algo-

rithm. We also note that the percentage of variables d ik and its

corresponding constraints included in the final iteration is roughly

50% of the total. Therefore, because less variables and constraints

than in the full LP model are needed, we expect that this sequen-

tial procedure will be able to compute the nucleolus for games

with larger number of players, with respect to the size of the

games that the full LP can address. Nevertheless, 50% of the total

number of 2 n constraints is still too much, if the games considered

are large enough. This is why, in the next section we propose a

more effective approach. 

3. Combining row/column generation with sampling. 

In this section we modify the previous row-column genera-

tion algorithm proposed before, by starting the algorithm with a

set A = I × { 1 , . . . , k max } , where I is a sample of randomly selected

coalitions (index i ) and k max represents the index k associated to

the coalition with the k max th largest excess, instead of A = ∅ . This

came to our mind because in the first iteration of the algorithm

in Section 2 , lots of coalitions were added to A , and very few

are added in the following iterations (very few constraints are vi-

olated). This might be explained by the fact that only (2 n − 1)

coalitions are needed for computing the nucleolus, as proved by

Granot et al. (1998) , Reijnierse and Potters (1998) , and therefore

only a few constraints are actually active in our LP model. There-

fore, if we start the algorithm with a set of coalitions that will lead

to an allocation close to the nucleolus, we expect that very few

constraints will be violated. 

However, due to the different LP models (in the different iter-

ations) that we have to solve, the total running times of this al-

gorithm are quite similar to the running times of the original LP

model. This fact will be tested more extensively in the experiments

section, considering different sampling procedures. 

3.1. A heuristic procedure based on sampling 

In this section we propose a heuristic approach to compute an

allocation that is expected to be close to the nucleolus, in a rea-

sonable amount of time. Such approach consists of stopping the

previous algorithm in the first iteration. This way, we do not need

complete knowledge of the characteristic function, nor we need to

check if all possible C ik constraints are satisfied. Note that the gain

in CPU time is immense, as we do not have to compute nor store

the exponentially increasing characteristic function. Besides, as we

will see in the experiment section, the allocations obtained are

fairly close to the true nucleolus. An added value of this method is

that one can control the size of the sigle LP problem to be solved

by means of the size of the sample taken (set I ) and k max . The only
P problem to be solved in this heuristic approach consists of: 

in 

k max ∑ 

k =1 

(λk − λk +1 ) 

( 

kt k + 

∑ 

i ∈ I 
d ik 

) 

(7)

 . t . d ik ≥ θi − t k ∀ i ∈ I, k = 1 , . . . , k max , (8)

θi = v (S i ) −
∑ 

j∈ S i 
x j , ∀ i ∈ I, (9)

n ∑ 

j=1 

x j = v (N) , 

d ik ≥ 0 , ∀ i ∈ I, k = 1 , . . . , k max . (10)

ote how the size of the LP problem has decreased to from O (4 n )

o O (| I | k max ) variables and constraints. The reader may note that

hoosing an appropriate set I is a key aspect of this algorithm.

herefore, in the experiments section, several sampling techniques

ill be applied, for selecting set I . Besides, different sam ple sizes

ill also be tested and compared. 

Other stopping criteria, like for example the number of con-

traints violated, or the proportion of such unsatisfied constraints,

tc. are indeed interesting. Unfortunately, they require the knowl-

dge of the complete characteristic function for all coalitions.

herefore, we do not apply these stopping criteria in our heuristic

pproach (which intends to find an allocation with excess vector

lose to that of the nucleolus, for very large games). 

As a summary of this section, we have proposed one exact al-

orithm (which stops when the solution returned does not violate

ny of the C ik constraints of the original LP problem) and a heuris-

ic algorithm (which stops after the first iteration). 

. Experiments 

In this section we summarize the computational experience we

onducted in order to assess the algorithms proposed. All exper-

ments are carried out on a desktop PC, with an Intel i7 proces-

or at 4.2 GHz, 16 GBytes of RAM, running Windows 10 Enterprise

4 bits OS. Coding is done in GAMS 25.0.2, and the solver used is

PLEX 12.8. The analysis of results is done with the help of RStu-

io. 

.1. Instance generation 

In order to test the algorithms proposed, we have built the fol-

owing sets of instances: 

• Random 12-player instances: a set of one hundred 12-player TU

games have been randomly generated, in such a way that: 

– v (S) ∈ { 1 , 2 , . . . , 9 } , ∀ S ⊂ N, S � = ∅ , N. 

– v (∅ ) = 0 , v (N) = 15 . 
• Balanced 12-player instances: a set of one hundred 12-player

games, such that they have non-empty core, built in the fol-

lowing way: 

– A random allocation x c ∈ Z 

12 is built, in such a way that for

every player j , x c 
j 
∈ { 0 , 5 } , following a uniform distribution. 

– The characteristic function is built in such a way that x c is

a core allocation, as follows: v (S) ∈ { 0 , . . . , ∑ 

j∈ S x c j } , for all

S ∈ 2 N , S � = N , and v (N) = x c (N) . 

Note that x c ( S ) ≥ v ( S ), ∀ S , and therefore the game has a non-

empty core. 
• The 18-player game defined in Puerto and Perea (2013) has

been analyzed as well. 
• Random 100-player instances: a set of ten 100-player TU

games, where the characteristic function is built in the same
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Table 3 

Average results for the exact approach, for sampling types 1 and 2, 

each sample size, and different values of k max . 

Sampling K max = 10 K max = 20 K max = 30 

Size Type Time e Iter Time e Iter Time e Iter 

100 1 5.39 6.59 5.98 6.59 7.36 6.92 

200 1 3.61 5.18 3.81 5.18 4.02 4.55 

300 1 1.76 2.05 1.83 2.05 2.23 2.31 

400 1 1.81 2.09 1.86 2.09 2.64 2.79 

500 1 2.18 2.63 2.25 2.63 2.63 2.63 

600 1 2.12 2.49 2.23 2.49 2.73 2.62 

700 1 2.30 2.56 2.36 2.56 2.63 2.40 

800 1 2.48 2.78 2.56 2.78 3.10 2.80 

900 1 2.72 3.03 2.82 3.03 3.58 2.93 

1000 1 2.82 2.98 2.92 2.98 3.30 2.81 

Avg. Type 1 2.72 3.24 2.86 3.24 3.42 3.28 

100 2 1.59 1.46 2.24 1.95 1.59 1.46 

200 2 1.75 3.88 2.21 3.80 1.75 3.88 

300 2 1.88 3.57 2.88 4.10 1.88 3.57 

400 2 2.02 3.76 3.00 4.05 2.02 3.76 

500 2 2.12 3.98 2.86 3.52 2.12 3.98 

600 2 2.02 3.18 3.10 3.64 2.02 3.18 

700 2 2.15 3.34 3.04 3.42 2.15 3.34 

800 2 2.21 3.19 3.50 3.50 2.21 3.19 

900 2 2.18 2.75 3.17 3.23 2.18 2.75 

1000 2 2.20 3.00 3.74 3.87 2.20 3.00 

Avg. Type 2 2.01 3.21 2.97 3.51 2.01 3.21 

Table 4 

Average results for the exact approach, for sampling types 3 and 4, 

each sample size, and different values of k max . 

Sampling K max = 10 K max = 20 K max = 30 

Size Type Time e Iter Time e Iter Time e Iter 

100 3 1.53 1.38 2.00 1.77 2.25 1.98 

200 3 2.29 3.70 2.54 3.96 2.97 4.44 

300 3 2.17 4.03 2.88 4.24 3.46 4.69 

400 3 1.95 3.11 2.55 3.41 3.90 5.01 

500 3 2.04 3.13 5.02 6.42 5.46 5.59 

600 3 2.07 3.13 2.80 3.42 3.65 3.53 

700 3 2.18 3.34 2.96 3.55 3.76 3.59 

800 3 2.23 3.18 3.01 3.50 3.56 3.50 

900 3 2.21 3.10 3.18 3.53 3.68 3.47 

1000 3 2.24 3.01 3.06 3.19 3.46 3.05 

Avg. Type 3 2.07 3.13 2.99 3.73 3.47 3.90 

100 4 1.74 1.27 2.20 2.11 2.66 2.00 

200 4 2.32 3.81 3.11 4.65 3.93 4.53 

300 4 2.13 3.18 3.10 3.72 3.80 4.08 

400 4 1.99 2.85 2.38 3.07 3.46 3.78 

500 4 2.06 2.68 2.26 2.72 2.92 2.86 

600 4 2.04 2.42 2.39 2.75 3.06 2.86 

700 4 2.09 2.46 2.57 2.85 3.42 3.11 

800 4 2.23 2.64 2.81 3.15 3.40 2.96 

900 4 2.27 2.67 2.67 2.74 3.62 2.99 

1000 4 2.40 2.88 2.85 2.88 3.59 2.81 

Avg. Type 4 2.13 2.69 2.63 3.06 3.39 3.20 
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.2. Algorithm parameters 

The algorithms proposed mainly depend on two factors: the

ype of sampling used to generate the set I , and the size of that

et. We now detail these two factors and specify their levels con-

idered. 

• Factor 1: type of sampling. We have tested three types of sam-

pling: 

1. Totally random: each coalition has the same probability of

being chosen. This is denoted as “Random” sampling, or

“Type1” sampling. 

2. Sampling per size, only small: We select the same number

of coalitions of each size, only if the size is less than or

equal to n /2. Coalitions of size greater than n /2 are not cho-

sen. This is denoted as “Size_Small” sampling, or “Type2”

sampling. This is justified by Table 1 , since only “small”

coalitions are binding in constraints C ik . 

3. Sampling per size, all: We select the same number of coali-

tions of each size, and all sizes are eligible. This is denoted

as “Size_All” sampling, or “Type 3 sampling”. 

4. Semicore sampling: All semicore coalitions (those of size 1

and those of size n − 1 ) are always chosen. The other coali-

tions until completing the sample are chosen randomly, like

in Type 1 sampling. This is denoted as “Semicore” sampling,

or “Type4” sampling. 
• Factor 2: sample size. Regarding the sample size, we have

tested the following values: 

– for the 12-player instances, | I| ∈ { 10 0 , 20 0 , . . . , 10 0 0 } (rang-

ing from 2.4% to 24.4% of all coalitions). 

– for the 18-player instance, | I| ∈ { 50 0 , 10 0 0 , . . . , 50 0 0 } (rang-

ing from 0.19% to 1.91% of all coalitions). 

– for the 100-player instances, | I| ∈ { 10 0 0 , 20 0 0 , . . . , 10 0 0 0 }
(ranging from 7 . 8 · 10 −26 % to 7 . 8 · 10 −25 % of all coalitions) 

We emphasize here that coalitions are re-sampled from one

size to the next, meaning that (for example) the 200 coalitions

sampled for size 200 do not necessarily contain the 100 coali-

tions sampled for size 100. 

Combining the three types of sampling with the 10 different

ample sizes, we have in total 40 different versions of our RCG al-

orithm and 40 versions of our heuristic. 

.3. Experiments over 12-player random instances 

For each of the 100 games in the 12-player random set, the

rue nucleolus has been computed by the RCG algorithm combined

ith sampling (for each sample size and type of sampling), as well

s the allocation given by each of the 30 versions of our heuris-

ic, using for k max = 20 as in Puerto and Perea (2013) . Besides, in

rder to check if the number of iterations of the row-column al-

orithm depends on k max , different values of this parameter have

een tested for the exact approach. 

.3.1. RCG results 

We first analyze the results obtained for the row-column gener-

tion algorithm, for which we run the 100 instances for all sample

izes and all sampling types described before. In order to check

f the value of k max affects the number of iterations and/or the

PU time of this algorithm, we also tested three different values

f k max ∈ {10, 20, 30}. The results are shown in Tables 3 and 4 . For

ach value of k max tested, columns “Size” and “Type” refer to the

evels of these factors which define the sampling used in the first

teration of the RCG algorithm. Column “Iter” refers to the average

umber of iterations needed by the exact algorithm, and column

Time e ” refers to the CPU time used by the exact algorithm. 
From our computational experience, we cannot conclude any

lear link between the value of k max and the number of iterations

eeded by the exact approach. It seems that the RCG algorithm

tarting with Type 2 sampling yields the best average results in

erms of CPU time, for k max ∈ {10, 30}. Starting with Type 4 sam-

ling seems to be best for the other value of k max . In terms of the

umber of iterations, the best average results are obtained when

sing Type 4 sampling, regardless the value of k max employed. 

.3.2. Heuristics results 

For each instance, and each version of our heuristic, different

utputs will be analyzed, which include the needed CPU time by

ach algorithm, and the quality of the allocation x returned by the

euristics. In order to test the quality of the solution returned by
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Table 5 

Average results over the random 12-player instances for sampling types 1 and 2, each 

sample size, and k max = 20 . 

Sampling Heuristic Exact 

Size Type RD a RD e C % max a min a Time h Time e Iter 

100 1 0.88 0.18 10.36 2.34 0.14 1.23 5.98 6.59 

200 1 0.77 0.14 10.86 2.07 0.12 1.22 3.81 5.18 

300 1 0.73 0.13 3.08 1.98 0.11 1.25 1.83 2.05 

400 1 0.69 0.12 4.00 1.85 0.11 1.28 1.86 2.09 

500 1 0.68 0.11 6.56 1.78 0.10 1.30 2.25 2.63 

600 1 0.62 0.11 8.02 1.67 0.09 1.34 2.23 2.49 

700 1 0.64 0.10 8.99 1.72 0.09 1.41 2.36 2.56 

800 1 0.63 0.10 10.99 1.67 0.11 1.41 2.56 2.78 

900 1 0.63 0.10 11.65 1.68 0.09 1.47 2.82 3.03 

1000 1 0.58 0.09 13.01 1.61 0.07 1.52 2.92 2.98 

Avg. Type 1 0.68 0.12 8.75 1.84 0.10 1.34 2.86 3.24 

100 2 0.62 0.15 2.15 1.58 0.09 1.22 2.24 1.95 

200 2 0.45 0.09 2.10 1.21 0.08 1.21 2.21 3.80 

300 2 0.35 0.06 4.53 0.96 0.04 1.24 2.88 4.10 

400 2 0.27 0.04 5.81 0.74 0.03 1.27 3.00 4.05 

500 2 0.24 0.04 7.44 0.63 0.02 1.31 2.86 3.52 

600 2 0.23 0.03 9.23 0.61 0.02 1.36 3.10 3.64 

700 2 0.21 0.02 9.95 0.57 0.01 1.38 3.04 3.42 

800 2 0.17 0.02 10.90 0.47 0.01 1.49 3.50 3.50 

900 2 0.17 0.02 11.25 0.46 0.00 1.56 3.17 3.23 

1000 2 0.16 0.01 11.96 0.43 0.00 1.60 3.74 3.87 

Avg. Type 2 0.29 0.05 7.53 0.77 0.03 1.36 2.97 3.51 

Table 6 

Average results over the random 12-player instances for sampling types 3 and 4, each 

sample size, and k max = 20 . 

Sampling Heuristic Exact 

Size Type RD a RD e C % max a min a Time h Time e Iter 

100 3 0.71 0.19 1.63 1.74 0.13 1.22 2.00 1.77 

200 3 0.58 0.14 1.84 1.50 0.09 1.20 2.54 3.96 

300 3 0.50 0.11 3.31 1.36 0.07 1.23 2.88 4.24 

400 3 0.45 0.09 4.82 1.24 0.08 1.26 2.55 3.41 

500 3 0.35 0.06 8.59 0.99 0.04 1.30 5.02 6.42 

600 3 0.30 0.05 6.43 0.83 0.04 1.33 2.80 3.42 

700 3 0.27 0.04 7.85 0.73 0.03 1.35 2.96 3.55 

800 3 0.27 0.04 8.54 0.76 0.03 1.40 3.01 3.50 

900 3 0.25 0.04 10.44 0.66 0.03 1.42 3.18 3.53 

1000 3 0.22 0.03 10.71 0.61 0.02 1.50 3.06 3.19 

Avg. Type 3 0.39 0.08 6.42 1.04 0.05 1.32 3.00 3.70 

100 4 0.76 0.21 1.08 1.79 0.16 1.38 2.20 2.11 

200 4 0.66 0.17 2.43 1.61 0.11 1.39 3.11 4.65 

300 4 0.60 0.14 2.56 1.48 0.11 1.43 3.10 3.72 

400 4 0.61 0.14 5.05 1.51 0.10 1.47 2.38 3.07 

500 4 0.58 0.13 6.33 1.48 0.10 1.51 2.26 2.72 

600 4 0.55 0.11 7.53 1.41 0.10 1.55 2.39 2.75 

700 4 0.54 0.12 9.21 1.43 0.09 1.67 2.57 2.85 

800 4 0.50 0.10 11.16 1.33 0.08 1.71 2.81 3.15 

900 4 0.48 0.10 12.34 1.31 0.09 1.70 2.67 2.74 

1000 4 0.45 0.09 12.89 1.25 0.07 1.79 2.85 2.88 

Avg. Type 4 0.57 0.13 7.06 1.46 0.10 1.56 2.63 3.06 
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the heuristic, we compared such allocations with the true nucleo-

lus in two different ways: The first one is a measure of the relative

deviation (RD) between the two allocations, the second is a mea-

sure of the RD between the excess vectors lexicographically sorted.

In other words, if ˜ x and x are the nucleolus and a given allocation,

and e ( x ) is the vector of the k max largest excesses produced by the

allocation x , two measures we use to assess the quality of the al-

locations returned by the heuristics are: 

• RD a = 

√ ∑ 

j∈ N ( ̃ x j −x j ) 
2 √ ∑ 

j∈ N ̃  x 2 
j 

. This measure values how far allocation x is

from the nucleolus ˜ x , in terms of Euclidean distance. 
• RD e = 

√ ∑ k max 
k =1 

(e ( ̃ x ) k −e (x ) k ) 
2 √ ∑ k max 

k =1 
e ( ̃ x ) 2 

k 

. This measure values how far the vec-

tor x is from the nucleolus ˜ x , in terms of their excess vectors

lexicographically sorted. 

The metrics RD a and RD e should not be interpreted as percent-

ges. Actually, they measure the distance between x and ˜ x ( RD a )

nd between the excess vector of the nucleolus e ( ̃  x ) and the ex-

ess vector of the given allocation e ( x )( RD e ). They are normalized

n such a way that, if they take value one, then x (or e ( x )) is as

ar from ˜ x ( e ( ̃  x ) ) as the norm of ˜ x ( e ( ̃  x ) ). One could see these two

etrics as the GAP of mathematical programs, which can take any

on-negative value. 
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Table 7 

Average results over 100 12-player balanced instances for sam- 

pling types 1 and 2, and each sample size. 

Sampling Heuristic 

Size Type RD a RD e C % R % Time h 

100 1 0.31 13.21 38.33 5.96 1.38 

200 1 0.14 6.12 32.17 3.32 1.40 

300 1 0.07 3.13 20.39 1.83 1.44 

400 1 0.02 0.87 9.38 0.54 1.47 

500 1 0.01 0.26 2.44 0.12 1.50 

600 1 0.00 0.16 1.62 0.08 1.54 

700 1 0.00 0.00 0.91 0.00 1.60 

800 1 0.00 0.00 0.57 0.00 1.62 

900 1 0.00 0.00 0.80 0.00 1.68 

1000 1 0.00 0.00 0.58 0.00 1.72 

Avg. Type 1 0.06 2.38 10.72 1.18 1.53 

100 2 0.21 8.93 29.62 4.18 1.41 

200 2 0.06 2.51 13.23 1.30 1.42 

300 2 0.02 0.72 3.76 0.32 1.45 

400 2 0.00 0.10 2.81 0.04 1.48 

500 2 0.00 0.12 2.76 0.05 1.54 

600 2 0.00 0.04 0.14 0.01 1.55 

700 2 0.00 0.00 0.07 0.00 1.63 

800 2 0.00 0.00 0.18 0.00 1.65 

900 2 0.00 0.00 0.42 0.00 1.70 

1000 2 0.00 0.00 1.81 0.00 1.80 

Avg. Type 2 0.03 1.24 5.48 0.59 1.56 

Table 8 

Average results over 100 12-player balanced instances for sam- 

pling types 3 and 4, and each sample size. 

Sampling Heuristic 

Size Type RD a RD e C % R % Time h 

100 3 0.28 11.81 28.69 5.10 1.35 

200 3 0.12 5.05 16.71 2.50 1.34 

300 3 0.05 2.24 10.32 1.16 1.37 

400 3 0.02 0.86 3.94 0.43 1.39 

500 3 0.00 0.12 1.04 0.05 1.41 

600 3 0.00 0.04 0.44 0.03 1.44 

700 3 0.00 0.00 0.03 0.00 1.48 

800 3 0.00 0.00 0.29 0.00 1.52 

900 3 0.00 0.00 0.65 0.00 1.55 

1000 3 0.00 0.00 2.09 0.00 1.62 

Avg. Type 3 0.05 2.01 6.42 0.93 1.45 

100 4 0.31 12.99 32.69 5.58 1.48 

200 4 0.14 5.97 23.87 3.01 1.49 

300 4 0.06 2.35 11.14 1.33 1.52 

400 4 0.02 0.85 5.63 0.49 1.55 

500 4 0.01 0.33 4.26 0.18 1.59 

600 4 0.00 0.10 0.67 0.05 1.61 

700 4 0.00 0.03 0.34 0.02 1.67 

800 4 0.00 0.00 0.09 0.00 1.69 

900 4 0.00 0.00 0.51 0.00 1.73 

1000 4 0.00 0.00 0.86 0.00 1.81 

Avg. Type 4 0.05 2.26 8.01 1.07 1.61 
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Table 9 

Results over the 18-player instance for sampling types 1 and 2, each sample size, 

k max = 30 . 

Sampling Heuristic 

Size Type RD a RD e RD ∗e C % max a min a Time h 

500 1 0.31 10.74 0.36 33.27 0.04 0.00 4.40 

1000 1 0.20 4.79 0.16 23.09 0.03 0.00 8.24 

1500 1 0.24 4.76 0.16 22.73 0.02 0.00 12.16 

2000 1 0.20 4.18 0.14 31.75 0.03 0.00 16.63 

2500 1 0.17 2.71 0.09 21.60 0.03 0.00 19.23 

3000 1 0.16 3.13 0.10 29.78 0.02 0.00 24.28 

3500 1 0.23 4.06 0.14 20.00 0.03 0.00 30.38 

4000 1 0.15 2.65 0.09 19.02 0.02 0.00 32.26 

4500 1 0.20 3.50 0.12 20.60 0.02 0.00 37.06 

5000 1 0.18 3.15 0.11 16.97 0.03 0.00 44.04 

Avg. Type 1 0.20 4.37 0.15 23.88 0.03 0.00 22.87 

500 2 0.12 2.32 0.08 23.24 0.02 0.00 2.71 

1000 2 0.22 5.84 0.19 32.86 0.02 0.00 4.70 

1500 2 0.14 3.63 0.12 22.59 0.02 0.00 6.83 

2000 2 0.13 2.05 0.07 31.52 0.02 0.00 9.33 

2500 2 0.13 2.34 0.08 30.57 0.02 0.00 10.83 

3000 2 0.15 3.44 0.11 20.62 0.03 0.00 12.72 

3500 2 0.10 2.23 0.07 28.22 0.02 0.00 25.06 

4000 2 0.08 1.08 0.04 26.87 0.01 0.00 18.58 

4500 2 0.12 2.14 0.07 22.88 0.02 0.00 30.27 

5000 2 0.08 1.57 0.05 23.89 0.01 0.00 23.65 

Avg. Type 2 0.13 2.66 0.09 26.33 0.02 0.00 14.47 

Table 10 

Results over the 18-player instance for sampling types 3 and 4, each sample size, 

k max = 30 . 

Sampling Heuristic 

Size Type RD a RD e RD ∗e C % max a min a Time h 

500 3 0.25 6.88 0.23 23.20 0.03 0.00 2.70 

1000 3 0.15 2.44 0.08 22.92 0.02 0.00 5.87 

1500 3 0.09 2.36 0.08 22.49 0.02 0.00 6.75 

2000 3 0.12 1.38 0.05 31.33 0.01 0.00 9.54 

2500 3 0.15 4.78 0.16 21.24 0.02 0.00 10.52 

3000 3 0.08 2.28 0.08 29.21 0.01 0.00 12.77 

3500 3 0.09 2.31 0.08 27.95 0.01 0.00 17.30 

4000 3 0.10 1.73 0.06 21.25 0.02 0.00 17.92 

4500 3 0.11 2.80 0.09 22.60 0.01 0.00 23.43 

5000 3 0.11 2.06 0.07 16.51 0.02 0.00 23.06 

Avg. Type 3 0.13 2.90 0.10 23.87 0.02 0.00 12.99 

500 4 0.44 14.79 0.49 33.11 0.06 0.00 5.31 

1000 4 0.28 7.53 0.25 22.85 0.03 0.00 8.82 

1500 4 0.24 5.61 0.19 31.99 0.03 0.00 12.81 

2000 4 0.23 5.13 0.17 21.78 0.02 0.00 16.88 

2500 4 0.24 4.74 0.16 21.07 0.04 0.00 20.42 

3000 4 0.21 4.07 0.14 28.95 0.02 0.00 26.30 

3500 4 0.18 2.89 0.10 27.65 0.02 0.00 30.48 

4000 4 0.19 3.48 0.12 18.34 0.02 0.00 33.57 

4500 4 0.22 4.05 0.14 17.30 0.03 0.00 40.45 

5000 4 0.17 3.13 0.10 16.21 0.02 0.00 42.49 

Avg. Type 4 0.24 5.54 0.19 23.93 0.03 0.00 23.75 
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Besides, we also checked how many C ik constraints are violated

y the allocation given by the heuristic, and the absolute compo-

entwise deviations between the true nucleolus and the alloca-

ions given by our heuristic. 

The average results obtained by our heuristic approach, over

he 100 random 12-player instances, for each sample size and

ach type of sampling, applying k max = 20 , are summarized in

ables 5 and 6 . Besides the columns already defined for the pre-

ious table, columns “RD a ”, “RD e ” and “Time h ” show the average

alues of the two relative deviations computed, as well as the av-

rage time needed (in seconds) by the heuristic. Column “C %”

hows the average percentage of constraints C ik violated, whereas

olumns “max_a” and “min_a” show the maximum and minimum
eviation between the heuristic allocation and the nucleolus, re-

pectively. 

In Tables 5 and 6 we obviously observe how the quality of the

olutions found increases with the sample size, for each type of

ampling tested, as both RD a and RD e decrease with the sample

ize. We also observe how the computational effort to find such

llocations increases smoothly. 

Our algorithms aim at finding allocations that are close to the

concept of nucleolus” (lexicographical minimization of the excess

ector) and not close to the “nucleolus as an allocation”. Since RD a 

easures the distance between allocations, and RD e measures the

istance between excess vectors, it is logical that RD a does not

how as good results as RD e does. 
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Table 11 

Average CPU-times in sec- 

onds over the 100-player in- 

stances, for each sample size 

tested. 

Sample size CPU time 

1000 2.16 

2000 4.44 

3000 8.80 

4000 13.54 

5000 26.26 

6000 27.24 

7000 36.03 

8000 52.31 

9000 57.52 

10,000 69.27 
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4.4. Experiments over 12-player balanced instances 

Another metric that could assess the quality of the allocation

returned by the heuristic is, for balanced games, the proportion of

rationality constraints violated. The average results of these exper-

iments are shown in Table 7 and 8 , where column “R %” shows the

average number of rationality constraints violated by the allocation

returned. 

A first conclusion after these results is that the nucleolus is

found if the sample size is greater than 700 or 800, depending on

the sampling type. This minimum sample size required is between

700 and 800, depending on the sampling type. These results are
2000 4000

0
10

20
30

40
50

60
70

Heuristic over 10

Sam

S
ec

on
ds

Fig. 1. Evolution of average CPU time used as a function of sample size, for each
xtremely good, and suggest that, whenever the core is non-empty,

ur heuristic procedure finds the nucleolus quite easily. 

.5. Experiments over medium instances 

In this section we analyze our heuristic procedure over the 18-

layer instance as presented and solved in Puerto and Perea (2013) ,

or which we know the true nucleolus. Tables 9 and 10 show the

esults of our heuristic procedure, using the four sampling strate-

ies suggested, and ten different sample sizes ranging from 500 to

0 0 0. Parameter k max is set to 30, as in Puerto and Perea (2013) . 

In this table we have added a new column “RD 

∗
e ”, to correct

he fact that since the norm of the excess vector yielded by the

ucleolus is too small (really close to zero), the numbers given

n column “RD e ” are somehow affected by this small denominator.

herefore, RD 

∗
e = RD 

∗
e ( 

√ ∑ k max 

k =1 
e ( ̃  x ) 2 

k 
) . In this game, 

√ ∑ k max 

k =1 
e ( ̃  x ) 2 

k 
=

 . 03338436 . 

The results confirm that our heuristic procedures can find allo-

ations close to the nucleolus in a reasonable amount of time also

or this larger game. The CPU time needed increases linearly with

he sample size. The best results in terms of relative deviations are

btained with sampling type 2, in which only small coalitions are

ampled. 

.6. Experiments over 100-player instances 

These instances are randomly generated in such a way that only

he data for the sampled coalitions (applying Type 1) is stored. The
6000 8000 10000

0−player instances

ple size

 type of sampling, in the heuristic approach for the 100-player instances. 
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eader may note that storing the characteristic function and the

oalition membership for 2 100 = 1 . 267651 e + 30 coalitions would

e a real challenge, and therefore applying the exact approach

eems impossible. The only purpose of this section is to show how

ne can obtain an allocation based on the proposed methodology

or large games. Table 11 shows the average CPU time needed for

ur heuristic procedure to find an allocation (in seconds) for the

ifferent values of sample size tested. We observe in Fig. 1 how

he increase in running times with respect to the size of the sam-

le taken seems linear. In order to test the latter claim, we built

 simple linear regression model to explain the average CPU time

f the heuristic as a function of the sample size, which yielded

ignificant parameters and a coefficient of determination of 0.9639

96.39% of the variability in CPU time is explained by the sample

ize). Such large coefficient of determination supports that the CPU

ime increases only linearly with the sample size. 

. Conclusions 

In this paper, we have introduced a row/column generation ap-

roach combined with sampling in order to find the nucleolus of

ny TU game. However, since the CPU time of this algorithm is

nly acceptable for relatively small instances, we have also pro-

osed a heuristic approach for finding the nucleolus. Although

oth the literature on the nucleolus and the literature on heuris-

ic and metaheuristic algorithms are vast, the combination of both

isciplines is rather limited and does not include any serious anal-

sis. We believe that, in order to compute the nucleolus for large

ames (which is more and more common in the current competing

orld) algorithms that are fast will be needed, even if the alloca-

ion returned is not guaranteed to be the true nucleolus. There-

ore, we consider this piece of research as a first avenue for the

nteraction between heuristics and the nucleolus, which will surely

ain more and more attention from the scientific community in the

ear future. 

The heuristics proposed consist of sampling the set of coali-

ions, and solving a LP-model previously introduced in the liter-

ture for the nucleolus, considering only the coalitions chosen. The

esults obtained with this approach are quite satisfactory, as the

llocations returned are close to the true nucleolus, as we tested

ver 12-player instances. Besides, our heuristics are capable of ob-

aining an allocation, which is also expected to be close to the

ucleolus, in a reasonable amount of time for large games (we

ested 100-player games). Specially good results are obtained when

he corresponding game has non-empty core. In such balanced

ames with 12 players, the true nucleolus was always found by

ur heuristic procedure using relatively small sample sizes. 

Further research on the nucleolus will necessarily focus on the

earch for fast algorithms for finding this allocation, or allocations

lose to it (as is the case of this paper). 

Both quality measures used to assess the quality of the solu-

ions returned by the heuristic are computed with respect to the

rigin. A different approach, in which the denominator considers

ome problem-specific point (e.g. the “centre” of the imputation

et) is worth being explored. As mentioned in the experiments sec-

ion, a disadvantage of using the distance relative to the origin is

hat the denominator is very close to zero. In fact, there are games

ith arbitrarily small or large denominator, which makes the mea-

ures considering the origin less meaningful. Therefore, further re-

earch will also focus on the search for new measures for assessing

he quality of the solutions returned. 
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